D-LPCN: A distributed least polar-angle connected node algorithm for finding the boundary of a wireless sensor network
نویسندگان
چکیده
A boundary of wireless sensor networks (WSNs) can be used in many fields, for example, to monitor a frontier or a secure place of strategic sensitive sites like oil fields or frontiers of a country. This situation is modeled as the problem of finding a polygon hull in a connected Euclidean graph, which represents a minimal set of connected boundary nodes. In this paper we propose a new algorithm called D-LPCN (Distributed Least Polar-angle Connected Node) which represents the distributed version of the LPCN algorithm introduced in [1]. In each iteration, any boundary node, except the first one, chooses its nearest polar angle node among its neighbors with respect to the node found in the previous iteration. The first starting node can be automatically determined using the Minimum Finding algorithm, which has two main advantages. The first one is that the algorithm works with any type of a connected network, given as planar or not. Furthermore, it takes into account any blocking situation and contains the necessary elements to avoid them. The second advantage is that the algorithm can determine all the boundaries of the different connected parts of the network. The proposed algorithm is validated using the CupCarbon, Tossim and Contiki simulators. It has also been implemented using real sensor nodes based on the TelosB and Arduino/XBee platforms. We have estimated the energy consumption of each node and we have found that the consumption of the network depends on the number of the boundary nodes and their neighbors. The simulation results show that the proposed algorithm is less energy consuming than the existing algorithms and its distributed version is less energy consuming than the centralized version.
منابع مشابه
Distributed and Cooperative Compressive Sensing Recovery Algorithm for Wireless Sensor Networks with Bi-directional Incremental Topology
Recently, the problem of compressive sensing (CS) has attracted lots of attention in the area of signal processing. So, much of the research in this field is being carried out in this issue. One of the applications where CS could be used is wireless sensor networks (WSNs). The structure of WSNs consists of many low power wireless sensors. This requires that any improved algorithm for this appli...
متن کاملA multi-hop PSO based localization algorithm for wireless sensor networks
A sensor network consists of a large number of sensor nodes that are distributed in a large geographic environment to collect data. Localization is one of the key issues in wireless sensor network researches because it is important to determine the location of an event. On the other side, finding the location of a wireless sensor node by the Global Positioning System (GPS) is not appropriate du...
متن کاملENERGY AWARE DISTRIBUTED PARTITIONING DETECTION AND CONNECTIVITY RESTORATION ALGORITHM IN WIRELESS SENSOR NETWORKS
Mobile sensor networks rely heavily on inter-sensor connectivity for collection of data. Nodes in these networks monitor different regions of an area of interest and collectively present a global overview of some monitored activities or phenomena. A failure of a sensor leads to loss of connectivity and may cause partitioning of the network into disjoint segments. A number of approaches have be...
متن کاملGeographic and Clustering Routing for Energy Saving in Wireless Sensor Network with Pair of Node Groups
Recently, wireless sensor network (WSN) is the popular scope of research. It uses too many applications such as military and non-military. WSN is a base of the Internet of Things (IoT), pervasive computing. It consists of many nodes which are deployed in a specific filed for sense and forward data to the destination node. Routing in WSN is a very important issue because of the limitation of the...
متن کاملA novel sleep/wakeup power management in wireless sensor network: A Fuzzy TOPSIS approach
The wireless sensor network (WSN) is typically comprised many tiny nodes equipped with processors, sender/receiver antenna and limited battery in which it is impossible or not economic to recharge. Meanwhile, network lifespan is one of the most critical issues because of limited and not renewal used battery in WSN. Several mechanisms have been proposed to prolong network lifespan such as LEACH,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ad Hoc Networks
دوره 56 شماره
صفحات -
تاریخ انتشار 2017